ON SPATIAL GAS FLOWS WITH DEGENERATE HODOGRAPHS

(0 PROSTRANSTVENNYKB TECHENIIAKH GAZA S VYROZHDENNY GODOGRAPOM)

PMM Vol.24, No.3, 1960, pp. 491-495
L. V. KOMAROVSKII
(Tomsk)
(Received 24 December 1959)

The papers [$1,2,3,4$] investigated gas flows whose hodograph which degenerates into a self-similar manifold or into a manifold of degree smaller by one than the number of independent variables. The papers [1, 2.5] investigate double waves in the case of potential flows. In the present note consideration is given to double waves without the assumption that the flow is potential. The flows [1,2,5] are obtained as a special case.

1. As is known, the equations of spatial motion of a polytropic gas for the adiabatic case have the form

$$
\begin{array}{ll}
\frac{\partial u_{i}}{\partial t}+u_{k} \frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{4}}{\partial x_{i}}=0 & \\
\frac{\partial u_{4}}{\partial t}+u_{k} \frac{\partial u_{4}}{\partial x_{k}}+\lambda u_{4} \frac{\partial u_{k}}{\partial x_{k}}=0 & (i, k=1,2,3)
\end{array}\binom{u_{4}=a^{2} / \lambda}{\lambda=\gamma-1}
$$

where u_{1}, u_{2}, u_{3} are the velocity components along the coordinate axes x_{1}, x_{2}, x_{3} (summation is carried over repeated indexes); a is the velocity of sound; γ is the ratio of specific heats. In what follows, unless stated otherwise, as in the preceeding case, the indexes will take the values 1,2 .

Using a variation of the method presented in [4], we shall consider a case where the hodograph velocity degenerates into a two-dimensional surface, i.e.

$$
\begin{equation*}
u_{3}=w\left(u_{1}, u_{2}\right), \quad u_{4}=0\left(u_{1}, u_{2}\right) \tag{1.2}
\end{equation*}
$$

It follows that the functions u_{1}, \ldots, u_{4} lie on the same two-dimensional surfaces. Let us examine the case where those surfaces are planes,
i.e.

$$
\begin{equation*}
x_{k}+a_{n k} y_{n}+a_{0 k}=0 \quad\left(y_{1}=x_{3}, y_{2}=t\right) \tag{1.3}
\end{equation*}
$$

where $a_{n k}$ and $a_{0 k}$ are functions of u_{1}, u_{2}. Since a derivative along any direction located on the surface of an arbitrary function $f\left(u_{1}, \ldots, u_{4}\right)$ equals zero, we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial y_{n}}=a_{n k} \frac{\partial f}{\partial x_{k}} \tag{1.4}
\end{equation*}
$$

Using (1.2) and (1.4) and eliminating the functions u_{3}, u_{4} and derivatives with respect to x_{3}, t, from System (1.1), we obtain

$$
\begin{array}{ll}
A_{i} \equiv\left(u_{k}+a_{1 k} w+a_{2 k}\right) \frac{\partial u_{i}}{\partial x_{k}}+\theta_{k} \frac{\partial u_{k}}{\partial x_{i}}=0 & \left(w_{i}=\frac{\partial w}{\partial u_{i}}\right) \\
A_{3} \equiv\left(u_{k} w_{i}+a_{1 k} w w_{i}+a_{1 k} \theta_{i}+a_{2 k} w_{i}\right) \frac{\partial u_{i}}{\partial x_{k}}=0 \quad & \left(\theta_{i}=\frac{\partial \theta}{\partial u_{i}}\right) \quad \text { (1.5) } \tag{1.5}\\
A_{4} \equiv\left(u_{k} \theta_{i}+a_{1 k} \theta_{i} w+a_{2 k} \theta_{i}+\delta_{i k} \lambda \theta+a_{1 k} \lambda \theta w_{i}\right) \frac{\partial u_{i}}{\partial x_{k}}=0 \quad\binom{\delta_{i k}=0, i \neq k}{\delta_{i k}=1, i=k}
\end{array}
$$

In what follows instead of System (1.5) we shall investigate an equivalent system, which is obtained in the following manner:

$$
\begin{align*}
& B_{i} \equiv b_{i \alpha \beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}} \equiv A_{i}=0 \\
& B_{3} \equiv b_{3 \alpha \beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}} \equiv A_{i}\left(w \dot{\theta}_{i}+\lambda w_{i} \theta\right)-A_{4} w=0 \tag{1.6}\\
& B_{4} \equiv b_{\alpha \alpha \beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}} \equiv A_{i}\left(w w_{i}+\theta_{i}\right)-A_{3} w=0
\end{align*}
$$

Since Equations (1.6) have to be satisfied for any y_{n} it is necessary to add to the system of Equations (1.6) the equations

$$
\begin{equation*}
\frac{\partial}{\partial y_{n}}\left(b_{i \alpha \beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}}\right)=0 \quad(i=1, \ldots, 4 ; \alpha, \beta, n=1,2) \tag{1.7}
\end{equation*}
$$

Taking the partial derivative and applying relationships (1.4), we obtain

$$
a_{n k} \frac{\partial}{\partial x_{k}}\left(b_{i \alpha \beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}}\right)+b_{i \alpha \beta} \frac{\partial a_{n k}}{\partial x_{\beta}} \frac{\partial u_{\alpha}}{\partial x_{k}}=0
$$

Taking into account (1.6), we have

$$
\begin{equation*}
b_{i \alpha \beta} \frac{\partial a_{n k}}{\partial x_{\beta}} \frac{\partial u_{\alpha}}{\partial x_{k}}=0 \quad(i=1, \ldots, 4 ; \alpha, \beta, k, n=1,2) \tag{1.8}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
\frac{\partial a_{n k}}{\partial x_{\beta}}=\frac{\partial a_{n k}}{\partial u_{8}} \frac{\partial u_{\delta}}{\partial x_{\beta}} \tag{1.9}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
\frac{\partial B_{i}}{\partial y_{n}} \equiv-J(-1)^{\alpha+\beta} b_{i \alpha \beta} \frac{\partial a_{n, 3-\beta}}{\partial u_{3-\alpha}} \equiv-J L_{i n}=0 \quad\binom{i=1, \ldots{ }^{4}}{n=1,2} \\
\left(J=\frac{\partial u_{1}}{\partial x_{1}} \frac{\partial u_{2}}{\partial x_{2}}-\frac{\partial u_{1}}{\partial x_{2}} \frac{\partial u_{2}}{\partial x_{1}}\right) \tag{1.10}
\end{gather*}
$$

In the future we shall assume that $J \neq 0$, as $J=0$ reduces the flow to the simple wave type. Those flows were investigated by Ianenkd 3].

We shall show that the relationships

$$
\begin{equation*}
\frac{\partial^{s} B_{i}}{\partial y_{n}^{s}}=0 \quad(i=1, \ldots, 4 ; n=1,2 ; s=2,3, \ldots) \tag{1.11}
\end{equation*}
$$

do not yield new equations. Indeed, using (1.4) and (1.6), we transform (1.11)
$\frac{\partial^{s} B_{i}}{\partial y^{8}}=(-J)^{\frac{s+1}{2}} J_{n}{ }^{\frac{s-1}{2}} L_{i n} \quad$ for s odd

$$
\left(J_{n}=\frac{\partial a_{n 1}}{\partial u_{1}} \frac{\partial a_{n 2}}{\partial u_{2}}-\frac{\partial a_{n 1}}{\partial u_{2}} \frac{\partial a_{n 2}}{\partial u_{1}}\right)
$$

$\frac{\partial^{s} B_{i}}{\partial y_{n}^{8}}=(-J)^{\frac{8}{2}} J_{n}{ }^{\frac{s}{2}} B_{i} \quad$ for s even
Thus, the system of Equations (1.10) determines $w\left(u_{1}, u_{2}\right)$ and $\theta\left(u_{1}\right.$, u_{2}), i.e. the two-dimensional surface, into which the velocity hodograph degenerates.
2. We shall investigate the matrix, which consists of the coefficients of the system of Equations (1.6)

$$
\left|\begin{array}{cccc||}
\zeta_{1} & \zeta_{2}-\theta_{2} & \theta_{2} & 0 \tag{2.1}\\
0 & \theta_{1} & \zeta_{1}-\theta_{1} & \zeta_{2} \\
\lambda w_{1} \theta \eta_{1}+c_{11} & \lambda w_{1} \theta \eta_{2}+c_{12} & \lambda w_{2} \theta \eta_{1}+c_{21} & \lambda w_{2} \theta \eta_{2}+c_{22} \\
\eta_{1} \theta_{1} & \eta_{2} \theta_{1} & \eta_{1} \theta_{2} & \eta_{2} \theta_{2}
\end{array}\right|
$$

where

$$
\begin{gather*}
\eta_{k}-a_{2 k}+u_{k}+w w_{k}+\theta_{k}+\theta_{k}, \quad \zeta_{k}-a_{1 k} w+a_{2 k} 1+u_{k}+\theta_{k} \\
c_{k k}=w \theta_{k}^{2}-\lambda w \theta\left(1+w_{k}^{2}\right) \\
c_{k m}=w \theta_{k} \theta_{m}+\lambda \theta\left(w_{k} \theta_{m}-w_{m} \theta_{k}\right)-\lambda w w_{k} w_{m} \theta \quad(k \neq m) \tag{2.2}
\end{gather*}
$$

Depending on the rank of (2.1) we will obtain various flows. The case $r=4$ leads to $u_{i}=$ const. Let $r=2$. Then obviously the solution will be

$$
\begin{equation*}
\eta_{k}=0, \quad \zeta_{k}=0 \tag{2.3}
\end{equation*}
$$

In that case we will arrive at a system of two equations tor the hodograph surface, which were initially obtained by Hyzhov [5].

Indeed, from (2.2) and (2.3) we obtain

$$
\begin{equation*}
a_{1 k}=w_{k}, \quad a_{2 k}=u_{k}-w w_{k}-\theta_{k} \tag{2.4}
\end{equation*}
$$

In that case, when the rank of the matrix (2.1) is equal to two, the system (1.10) will contain only four independent equations. When (2.4) is substituted into Equations (1.10) two of them will become identities, while the remaining two will yield the desired equations.

In the most general case the requirement that the rank of the matrix (2.1) shall be equal to two leads to four algebraic equations for the unknowns η_{k} and ζ_{k}. Determining the roots of this system, for example

$$
\begin{gather*}
\eta_{k}=w w_{k}+\frac{w}{\nu}\left[(-1)^{3-k} \theta_{3-k}+\theta_{k} \omega\right], \quad \zeta_{k}=0 \\
\left(v=(-1)^{3-\alpha} w_{\alpha} \theta_{3-\alpha}, \omega^{2}=-\left(1+w_{\alpha} w_{\alpha}\right)+\frac{1}{\lambda \theta}\left(\theta_{\alpha} \theta_{\alpha}+v^{2}\right)\right) \tag{2.5}
\end{gather*}
$$

we find $a_{n k}$. Substituting $a_{n k}$ into (1.10), we obtain the system of equations for the functions $w\left(u_{1}, u_{2}\right)$ and $\theta\left(u_{1}, u_{2}\right)$.
3. Let the rank of the matrix (2.1) be equal to three. Then the system of Equations (1.6) will be dependent. Let us arrange the equations so as to make the first three equations independent. Then the System (1.10), or the equivalent, System (1.8), will contain two dependent equations with index $i=4$.

Let us investigate three equations of the System (1.6) together with any Equation (1.8). Then the determinant of 4th order will be equal to zero, i.e.
$D_{1} b_{i 1 \beta} \frac{\partial a_{n 1}}{\partial x_{\beta}}-D_{2} b_{i 1 \beta} \frac{\partial a_{n 2}}{\partial x_{\beta}}+D_{3} b_{i 2 \beta} \frac{\partial a_{n 1}}{\partial x_{\beta}}-D_{4} b_{i 2 \beta} \frac{\partial a_{n 2}}{\partial x_{\beta}}=0 \quad\left(\begin{array}{ll}i=1, & 2, \\ \beta, n=1, & 2\end{array}\right)$
where D_{i} are determinants of the 3 rd order, obtained from matrix (2.1) minus the last line, by means of delating the i-column. Otherwise $u_{i}=$ const. From (3,1) we obtain

$$
\begin{equation*}
D_{1} b_{i 11}-D_{2} b_{i 12}+D_{3} b_{i 21}-D_{4} b_{i 22}=0 \quad(i=1,2,3) \tag{3.2}
\end{equation*}
$$

Using identities (3.2), we rewrite System (3.1)

$$
\begin{align*}
& \left(D_{1} b_{i 11}+D_{3} b_{i 21}\right)\left(\frac{\partial a_{n 1}}{\partial x_{1}}-\frac{\partial a_{n 2}}{\partial x_{2}}\right)+\left(D_{1} b_{i 12}+D_{3} b_{i 22}\right) \frac{\partial a_{n 1}}{\partial x_{2}}+ \\
& +\left(-D_{2} b_{i 11}-D_{4} b_{i 21}\right) \frac{\partial a_{n 2}}{\partial x_{1}}=0 \quad(i=1,2,3 ; n=1,2) \tag{3.3}
\end{align*}
$$

We investigate this system for $n=$ const with respect to

$$
\left(\frac{\partial a_{n 1}}{\partial x_{1}}-\frac{\partial a_{n 2}}{\partial x_{2}}\right), \frac{\partial a_{n 1}}{\partial x_{2}}, \frac{\partial a_{n 2}}{\partial x_{1}}
$$

We shall find its determinant Δ by computing

$$
\begin{equation*}
\Delta=-\left(D_{1} D_{4}-D_{2} D_{3}\right)^{2} \tag{3.4}
\end{equation*}
$$

On the other hand, from System (1.6) which contains the first three equations, we obtain

$$
\begin{equation*}
J=\psi^{2}\left(D_{1} D_{4}-D_{2} D_{3}\right) \tag{3.5}
\end{equation*}
$$

where ψ is an arbitrary function of u_{1} and u_{2}.
Hence, if $\Delta=0$, we obtain $J=0$, i.e. the propagation of a simple wave; if $\Delta \neq 0$, then

$$
\begin{equation*}
\frac{\partial a_{n_{1}}}{\partial x_{1}}-\frac{\partial a_{n_{2}}}{\partial x_{2}}=0, \quad \frac{\partial a_{n_{1}}}{\partial x_{2}}=0, \quad \frac{\partial a_{n_{2}}}{\partial x_{1}}=0 \tag{3.6}
\end{equation*}
$$

In that case a two-parameter family of two-dimensional manifolds will intersect along a common straight line.
4. Now, let the rank of matrix (2.1) be equal to unity. It is easily established that this is possible only for

$$
\begin{equation*}
\zeta_{k}=0, \quad \theta_{k}=0 \tag{4.1}
\end{equation*}
$$

We shall investigate this case. From (2.2) we obtain

$$
\begin{equation*}
a_{2 k}=-u_{k}-a_{1 k} w, \quad \eta_{k}=w\left(w_{k}-a_{1 k}\right) \tag{4.2}
\end{equation*}
$$

Then the System (1.10) will yield two independent equations

$$
\begin{equation*}
(-1)^{\alpha+\beta}\left(\delta_{\alpha \beta}+a_{1 \beta} w_{\alpha}\right) \frac{\partial a_{1,3-\beta}}{\partial u_{3-\alpha}}=0, \quad a_{1 \alpha} w_{\alpha}+1=0 \tag{4.3}
\end{equation*}
$$

Substituting the value a_{12} from the second equation into the first, we determine a_{11} in terms of w

$$
\begin{equation*}
a_{11}=\frac{-w_{1} w_{22}+w_{2} w_{12}+w_{2} D}{w_{2}{ }^{2} w_{11}-2 w_{1} w_{2} w_{12}+w_{1}{ }^{2} w_{22}} \quad\left(w_{k m}=\frac{\partial^{2} w}{\partial u_{k} \partial u_{m}}, D^{2}=w_{12}{ }^{2}-w_{11} w_{22}\right) \tag{4.4}
\end{equation*}
$$

For the $a_{n k}$ selected in this manner only one independent linear equation of System (1.6) with two desired functions u_{1} and u_{2} has to be satisfied, which is easily accomplished. If we assume, for example, that u_{2} is an arbitrary function of x_{1} and x_{2}, then for u_{1} we obtain the linear inhomogeneous equation

$$
\begin{equation*}
w_{2} \frac{\partial u_{1}}{\partial x_{1}}-w_{1} \frac{\partial u_{1}}{\partial x_{2}}=j\left(x_{1}, x_{2}, u_{1}\right) \tag{4.5}
\end{equation*}
$$

which is easily integrated.
Using the values $a_{n k}$ determined as functions of u_{1} and u_{2}, and also the equations of the two-dimensional surface (1.3), we find the flow in the physical space.
5. We shall investigate the special case of steady gas flow, i.e. $a_{2 k}=0$. From Bernoulli's equation we obtain

$$
\begin{equation*}
\theta_{k}=-u_{k}-w w_{k} \tag{5.1}
\end{equation*}
$$

Since $a_{2 k}=0$, it follows, that $\eta_{k}=0$, i.e. in this case the last equation of (1.6) becomes an identity.

The requirement that the rank of matrix (2.1) be equal to two, leads to two independent equations for ζ_{k}

$$
\begin{gather*}
c_{12} \zeta_{1}^{2}-c_{11} \zeta_{1} \zeta_{2}+\left(c_{11} \theta_{2}-c_{12} \theta_{1}-c_{21} \theta_{1}\right) \zeta_{1}+c_{11} \theta_{1} \zeta_{2}=0 \tag{5.2}\\
c_{22} \zeta_{1}^{2}-c_{21} \zeta_{1} \zeta_{2}-c_{22} \theta_{1} \zeta_{1}+c_{11} \theta_{2} \zeta_{2}=0
\end{gather*}
$$

The simplest solution $\zeta_{k}=0$ leads to the equation of the hodograph surface, obtained by Nikol ${ }^{\text {'s }}$ skii [2].

The other solutions of Equations (5.2) have the form

$$
\begin{equation*}
\zeta_{\kappa}=\theta_{k}+\frac{u_{k} \nu+(-1)^{3-k} w \theta_{3-k}}{\nu-w \omega} \tag{5.3}
\end{equation*}
$$

where the notation is the same as in (2.5) with consideration of (5.1). The expression for ω^{2} may be simplified

$$
\begin{equation*}
\omega^{2}=\left(M^{2} \sin ^{2} \tau-1\right)\left(1+w_{\alpha} w_{\alpha}\right) \tag{5.4}
\end{equation*}
$$

where M is the Mach number, τ is the angle between the gas velocity and
the normal, to the surface of the hodograph at the corresponding point. From (5.4) it follows that only supersonic flows are possible.

Determining $a_{1 k}$ from (5.3) and substituting it into (1.10) we obtain a system of two quasi-linear equations of the $2 n d$ order for the surface of the hodograph.

The case when the rank of the basic system is equal to three does not yield new flows. Irdeed, from Section 3 it follows, that for $\Delta=0$ we obtain the flows of simple type wave, while $\Delta \neq 0$ applies to conical flow.

BIBLIOGRAPHY

1. Giese, I. M., Compressible Flows with Degenerate Hodographs. Quart. Appl. Math. Vol. 9, No. 3, 1951.
2. Nikol'skii, A.A., 0 klasse adiabaticheskikh techenii gaza, kotorye v prostranstve godografa skorosti izobrazhaiutsia poverkhnostiami (On a class of adiabatical flows, the velocities of which are represented as surfaces, in the hodograph plane). Sb. teoret. rabot po aerodinamike. 1957.
3. Ianenko, N. N., Begushchie volny sistemy kvazilineinykh uravnenii (Running Waves of the System of Quasi-linear Equations). DAN SSSR. Vol. 109, No. 1, 1956.
4. Pogodin, Iu.A., Suchkov, V.A. and Ianenko, N. N., O begushchikh volnakh uravnenii gazovoi dinamiki (On Running Waves of Equations of Gaseous Dynamics). PMM Vol. 22, No. 2, 1958.
5. Ryzhov, O.S., O techeniiakh s vyrozhdennym godografom (On the Flows with Degenerate Hodograph). PMM Vol. 21, No. 4, 1957.
